iTPC Electronics & DAQ

T. Camarda, J. Hammond, *T. Ljubicic*, B. Scheetz, A. Tkatchev, S. Valentino

Brookhaven National Laboratory

Components

- Padplane PCB
- 2. Inner Front End Electronics (iFEE) Boards with SAMPA ASIC
- 3. Inner ReaDOout (iRDO) Boards
- 4. Power & Trigger Distribution
- DAQ Receiver Boards
- 6. DAQ PCs & Other Components

Padplane (1)

- a new padplane needs to be designed & manufactured
 - halogen-free PCB material of large size and large thickness
- first test version (pre-prototype) was designed and manufactured according to old requirements of having electronics only at the edges
 - this doesn't work well due to high capacitive noise because of long traces → no real surprise
 - abandoned due to requirements change → we are now designing according to the current topology of having the iFEE connectors over the entire padplane surface
 - almost the same as the current, old, TPC ⇒ much simpler and safer (risk-free)
- new real prototype is in preparation
 - schematics finished
 - waiting for layout
 - cheaper material

Padplane (2)

- new inner padplane
 - 40 packed rows (vs 13 sparse rows)
 - pad size 5x16 mm (vs 3.35x11.5mm)
 - 3500 pads per sector (vs 1750)

• the number of electronics channels is 2x larger than now ⇒ will represent

50% of the total TPC electronics

iFEE Overall

64 channel device

- ...compared to the current 32 channel FEE
- ~same physical size as the old FEE
- same count of 55 iFEEs per inner sector as the old FEE
 - at roughly the same slot positions
- same & re-used: mounting brackets, mounting & cooling manifolds → simplifies installation and alleviates risk
- plugged directly into the new edge connector on the new iTPC padplane
- will contain
 - 2 x SAMPA ASICs
 - 1 master control FPGA (Spartan 6 series)
 - local voltage regulators and references for the SAMPA
 - connector to the new iRDO readout unit (readout is fast-serial)
 - debugging & local operation: fast USB readout, local FPGA PROM

iFEE (2)

- a pre-prototype exists
 - used to develop firmware and check concepts
 - remote FPGA booting
 - serial links
 - new cable & connector to the new iRDO (SAS based)
 - USB & FPGA PROM for debugging and/or standalone use
 - but has no SAMPA chip
- first real prototype in schematics phase
 - waiting for the SAMPA BGA pinout (Feb 2016)
- testing with SAMPA in the lab in Jun/Jul 2016
- test in TPC with real data from collisions expected in Jan 2017

SAMPA ASIC (1)

- SAMPA is a 32 channel, integrated pre-amplifier, shaper, ADC, digital filter, zero-suppressor & storage ASIC
- represents an evolution from our current STAR & ALICE PASA & ALTRO ASICs with some improvements:
 - o 32ch vs 16ch
 - lower power per channel
 - integrated analog preamp-shaper vs separate PASA & ALTRO
 - programmable analog gain, polarity and shaping time (suitable for wires & GEMs)
 - o very fast serial readout vs a clumsy 40-lane parallel bus
 - suitable for streaming mode
- designed in Brasil by the Sao Paulo Groups with requirements driven by
 - ALICE TPC Upgrade
 - ALICE MCH Upgrade
 - STAR iTPC Upgrade

SAMPA (2)

- SAMPA Schedule
 - 3 small prototypes finished (so-called MWP1) of:
 - 1 channel analog section, 1 channel ADC, 3 channel ADC+digital section
 - All successful with some issues found & fixed
 - MWP2 is close to being submitted ⇒ expected delivery in May 2016
 - full 32 channel prototype with all the necessary features and also in BGA packaging
 - a critical step
 - MWP3 is scheduled to be submitted in Dec 2016
 - expected to fix bugs and errors discovered (if any) during MWP2 testing...
 - Final Submission in Jan 2018
 - First lot (fully tested) Aug 2018
- This is the heart of the iTPC electronics upgrade and is a very crucial component

iRDO (1)

• prototype exists and is currently used to develop firmware

iRDO (2)

- we expect to stop using the ALICE-developed SIU card (and the corresponding RORC Receiver) and move to internal Xilinx serial channels
 - expect to save \$\$ because multi-gigabit channels already exist "for free" on the new Xilinx devices (such as e.g. Atrix & Kinetix)
 - decouple ourselves from CERN-developed hardware since CERN is moving in their own specific direction
- in progress...

DAQ Optical Receiver Board (1)

- We have 2 options
 - Use the the ALICE-developed D-RORC custom receiver boards
 - PCle Based
 - ALICE-developed DDL protocol
 - used in the current TPX
 - somewhat expensive (need to purchase the sender card SIU as well as the receiver D-RORC)
 - ...and the SIU is not really supported anymore...
 - become too closely tied to small CERN-supported companies
 - ...which is becoming an issue...
 - Use direct serial links based upon local protocols and Xilinx cores
 - PCle Based
 - off-the-shelf
 - with some commercial support e.g. HiTech
- Option 2 is our current default

DAQ Optical Receiver (2)

- off-the-shelf optical receiver candidate
 - supports 10 X 5 Gb/s optical serial channels
 - we plan to use only 4 channels
 - PCle interface core included
 - will plug into a Linux multi-CPU "DAQ PC"
 - programmable FPGA
 - possible optimizations
- HighTech Xilinx Kintex Dev Kit
- currently under evaluation
 - decision in 2016

Power & Trigger/Clock Distribution

- we plan to re-use the existing 2 power cables per inner sector
 - they exist from the very first TPC electronics thus they are already overspec-ed
 - but we are cautious and will monitor the power use with the prototypes
- power supplies
 - power is somewhat unknown due to the SAMPA
 - but we estimate that the SAMPA is ~1.5x less than the current PASA & ALTRO
 - since we will have 2x more channels we roughly assume that the amount of power needed is almost the same
 - however, the industry is moving to lower voltage thus we will change the existing power supplies
- we plan to re-use existing Trigger TCD cables (PECL standard) for the new inner sector
 - with added connectors

DAQ PCs, fibers etc.

- new DAQ PCs will need to be spec-ed, purchased and installed
 - "usual" Linux boxes with (at least) 8 CPU cores → nothing special these days
- additional optical fibers will need to be installed
 - no particular problem, nothing special...

Cost

	# items	# with spares	\$ per item	\$ all	With contingency (20%), overhead (56%)
SAMPA	2640	3500	\$44	\$154k	
iFEE	1320	1580	\$130 (wo SAMPA)	\$206k	
iRDO	96	116	\$1300	\$151k	
DAQ Receiver	24	26	\$3500	\$91k	
Cables, fibers, misc	-	-	-	\$50k	
Power Supplies	48	52	\$600	\$32k	
DAQ PC	24	26	\$3000	\$80k	
Totals				\$764k	\$1430k

Schedule

	2016	2017	2018 early	2018 late
padplane	prototype test produce		start sector installation	end sector installation
iFEE	evaluate SAMPA prototype with SAMPA	final version produce 1 sector's worth	produce all PCBs vet PCB purchase all components install into 1 sector & test	SAMPA arrives mount SAMPA & components Q&A install all full system test
iRDO	prototype 2	final version produce 1 sector's worth	produce & Q&A all install into 1 sector & test	install all full system test
Power Supplies Trigger Cables Fibers	evaluate	evaluate test	purchase & install all full test using 1 sector's worth	full system test
Receiver Cards	prototype test	final version	purchase & install all full test using 1 sector's worth	full system test
DAQ PCs	develop drivers	final drivers & software specification	purchase & install all full test using 1 sector's worth	full system test

Risks & Resources

- Manpower is deemed sufficient
 - remark: this same group designed, tested and installed all of the current TPX Electronics (the so-called "DAQ1000 Upgrade") 8 years ago
- SAMPA is the biggest risk
 - especially related to the delivery schedule (Aug 2018)
 - but → the ASIC will be submitted already in Jan 2018 so we will have ample time to assess possible solutions in case this schedule slips
 - in case of a major schedule slip or major problems with the SAMPA one possibility is to re-use old electronics and readout every 2nd padrow
 - this keeps the Project on schedule but with limited functionality (20 rows vs the required 40, compared to the current 13)

Closing Remarks

- 2016 is a critical year for proof-of-concept prototyping
 - mostly for SAMPA
 - but also the iFEE, iRDO and the DAQ Receiver
 - we must produce the final padplane by July 2016
- 2017 gives us enough time to produce & stress-test final versions of all components (iFEE, iRDO, Receiver Cards, DAQ PC software)
 - we will produce enough electronics for 1 full inner-sector
- 2018 electronics production, Q&A & installation will be tight due to the still "soft" and somewhat unknown SAMPA production schedule
 - we plan to do as much as possible without the SAMPA
 - padplane, iRDOs, Receiver Cards, power supplies, cabling & DAQ PCs can be done earlier
 - iFEE can have the PCB done & vetted earlier